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ABSTRACT 

The presence of the measurement errors is a rule rather than an exception in any process 
monitoring context. Since the observations are generally observed, in a quick manner, by 
some measuring process and are time ordered. Moreover, their presence contributes 
negatively towards the performance of the usual control charting schemes. Therefore, it 
will be naïve and may lead to invalid conclusions to devise a control structure, without 
taking them into account, at first place, and then counteracting their adverse effect. This 
paper studies the foregoing effect on the performance of two eminent quality control charts 
(QCC), for the mean or average parameter of a process, namely: Crosier CUSUM and Dual 
CUSUM charts. With the growing intensity of the error variation, a deteriorating 
performance of the said charts has been observed. The average run length (ARL) behaviors, 
zero-state and steady-state of both charts are studied, using the Monte-Carlo simulation 
algorithm, under different situations for the effect of measurement errors. Also, extra 
quadratic loss (EQL), relative average run length (RARL), and performance comparison index 
(PCI) are used to evaluate the performance of the charts.  Repeated measurements are 
employed, as a remedial scheme, for the effect of measurement errors. An illustrative 
example is incorporated to elucidate the study. 

Keywords: CUSUM, Crosier CUSUM, Dual CUSUM Control Charts, Error Variation, Monte-

Carlo Simulations, Performance Measure, Process Monitoring, Measurement Errors. 

 

1. INTRODUCTION:  

Statistically speaking, there are two types 

of variations that may violate the smooth 

running of a manufacturing or servicing 

process: random or natural and causal 

variations. The former are the organic and 

uncontrollable part of the process, and a 

process is called in-control (IC) if it is 

working under such variations only. The 

causal variations are those which need to 

be immediately detected and accounted 

for. If such variations are at work, the 

process is called out of control (OC). 
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Quality control charts or simply control 

charts (CC) are the most widely used and 

effective devices, in the so called 

statistical process control tool kit. They 

are meant to monitor as well as improve 

the quality of a product or a service. They 

do so by signaling timely any departure 

from normalcy, due to the presence of 

some assignable causes in a process. Such 

departure or aberration is generally 

known as shift (in process parameters) in 

quality control literature. The idea of 

control chart was first conceived by 

Shewhart (1920), to detect shifts in the 

mean of a manufacturing process. A CC 

comprises a target value for the process 

parameter along with a tolerable range, 

for that value, known as control limits. 

Samples are repeatedly drawn from the 

process and values for the concerned 

parameter are estimated. If the values are 

within the control limits, the process is 

considered as IC, otherwise OC. Since its 

intervention in the industrial and servicing 

processes, many modifications and 

improvements of CC, have been 

suggested. Mainly, there are two types of 

control charts: memory-less and memory-

type control charts. As the names suggest, 

the former is based upon only current 

sample, therefore, suitable for large shift 

size (more than 1.5 times standard 

deviation (SD) of the process); whereas 

the latter takes into account the past 

samples as well, and is therefore suitable 

for small sized shifts   (Montgomery, 

2020). Shewhart CC and its different 

variants are examples of memory-less 

charts. The memory-type control charts 

mainly constitute of cumulative sum 

(CUSUM) and exponentially weighted 

moving average (EWMA) charts. The 

latter, devised by (Roberts, 1959), is 

based upon the weighted average of 

current and all the past observations, with 

geometrically assigned weights, such that 

the current value has the highest one. See 

also (Crowder, 1987), (Crowder, 1989) and 

(Lucas & Saccucci, 1990) for good 

discussion of the EWMA. An efficient CC 

should be sensitive enough to signal any 

shift (small or large) as soon as possible 

and should be robust enough for the 

process settings.   

First introduced by (Page, 1954), the 

CUSUM chart, based on the cumulative 

sum of deviations from the mean, is used 

to detect small to moderate shifts, in a 

process. Two statistics work 

simultaneously for both depreciation and 

rise in the target value of the concerned 

parameter. Many a research article have 

been produced to explore and improve 

different aspects of the CUSUM chart. 

(Lucas, 1982) combined the Shewhart and 

the CUSUM to construct a single chart that 

was efficient to signal both large and small 

shifts, in a process. (Lucas & Crosier, 

2000) introduced the idea of fast initial 

response (FIR), by using a headstart, 

which made it more sensitive at the start. 

(Jiang et al., 2008) originated the idea of 

adaptive CUSUM, which first estimated 

the expected shift size in the process and 

accordingly constructed a plausible 

CUSUM CC. Similarly (Riaz, 2008) for the 

first time made use of the auxiliary 

information (variable) for the estimation 

of the quality parameter, taking 

inspiration from survey sampling 

techniques. (Sales et al., 2020) proposed 

a Shewhart control chart for monitoring 

the mean under a first order Poisson 

mixed autoregressive process.  

(Crosier, 1986) skillfully amended, the 

structure of the CUSUM to make it based 

on a single statistic. This not only 

simplified the multivariate version of the 

CUSUM but also showed a little 

improvement in the performance than the 

classical one. (Zhao et al., 2005) 

presented the idea of the dual CUSUM 
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(DCUSUM), by maneuvering the (Lorden, 

1971) strategy of running infinite CUSUM 

charts for various shift sizes. The rationale 

of DCUSUM being that the CUSUM chart is 

optimal for only a given shift size, in the 

process. He argued that running two, 

instead of one, CUSUM charts would 

enhance the sensitivity of the controlling 

scheme, to detect optimally a number of 

shifts lying within a specified range.  

In any measuring situation, various ways, 

some known some yet-to-be-known, are 

available to record the characteristic of 

interest. Each of these measurements, 

results into a similar but not necessarily 

the same observation. This disagreement 

between the true and the observed value 

of the concerned characteristic is referred 

to as measurement error. (Bennett, 1954), 

for the first time studied the effect of 

these errors on the process monitoring and 

concluded that the measurement variance 

that was less than the variance of the 

process was negligible. He used the 

simplest model for the errors, which is the 

difference between the true and the 

measured values of the quality variable. 

Following the same model, (Abraham, 

1977) elaborated the effect of these 

errors on the control limits of the mean 

chart; (Kanazuka, 1986) saw the same 

effect on combined Mean-Range chart, in 

terms of power structure while (H-J 

Mittag, 1995) and (Hans-Joachim Mittag & 

Stemann, 1998) on the S-chart, instead of 

R-chart. (Linna & Woodall, 2001) used a 

covariate model for the effect of 

measurement errors on the performance 

of mean and variance charts. (Stemann & 

Weihs, 2001) investigated the effect on 

the EWMA chart. (P. Maravelakis et al., 

2004) considered the covariate model for 

the effect of these errors on the EWMA 

chart; and (P. E. Maravelakis, 2012) 

studied this effect on the CUSUM chart and 

observed that the CUSUM performed 

better than EWMA in the presence of 

measurement errors. For more discussion, 

we refer to: (K. P. Tran et al., 2016), 

(Sabahno & Amiri, 2017),  (P. H. Tran & 

Heuchenne, 2019), (Sabahno et al., 2019),  

(Saha et al., 2020), (Zaidi et al., 2020), 

(Nguyen et al., 2020), (Arif et al., 2020), 

and (Ayyoub et al., 2020). 

Both Crosier’s CUSUM and dual CUSUM 

charts are more powerful than the 

conventional one, in detecting shifts in 

the location parameter of a process. Of 

late, extensive research includes 

exploring the different features of these 

two charts and amalgamating new ideas 

with these to have more powerful tools for 

the statistical process control. This paper 

seeks the performance of CCUSUM and 

DCUSUM under the effect of the 

measurement errors. The performance is 

evaluated in terms of average run length 

(ARL), standard deviation of run length 

(SDRL) and median run length (MRL), using 

Monte-Carlo simulation algorithm. Both 

zero-state and steady state behaviors are 

studied. Furthermore, extra quadratic loss 

(EQL), relative average run length (RARL) 

and performance comparison index (PCI) 

are also used to evaluate the performance 

of the charts. The rest of the paper 

proceeds as: Section 2 discusses briefly 

the structure of the usual CCUSUM and 

DCUSUM and the models for effect of 

measurement errors; Section 3 sees the 

effect of measurement errors on the two 

charts; Section 4 includes the simulation 

study of the effect; Section 5 compares 

the performance of the two charts under 

perfect and faulty measurements; finally, 

Section 6 contains concluding remarks and 

recommendations. 

2 Existing Charts  

Let { Xt; t ≥ 1} be the underlying 

quality characteristic, which is N(𝜇, 𝜎2) at 

time, t ≥ 1. In order to monitor the 
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changes in the process mean 𝜇, a simple 

random sample of size n: (X1t, X2t, … , Xnt), 

is repeatedly drawn, from the process, 

and the value of �̅�𝑡 =
1

𝑛
∑ 𝑋𝑖𝑡

𝑛
𝑖=1 , the 

sample mean at the time t, is computed. 

In correspondence to the {𝑋𝑡}, {�̅�𝑡; t ≥ 1} 

is a sequence of independently and 

identically normally distributed random 

variables with mean µ and variance  
ℴ2

𝑛
 . 

Suppose that the process {𝑋𝑡}, remains in 

IC state till a particular point of time and 

then gets out-of-control because of the 

occurrence of an unknown shift , in the 

process mean µ. Here  is the standardized 

shift:   = |𝜇1 − 𝜇0| (𝜎 𝑛−0.5)⁄ , 

corresponding to the new out-of-control 

mean of the process ‘𝜇1’. 

2.1 Crosier’s CUSUM chart under the 

assumption of perfect 

measurements 

The CCUSUM chart is a 

modification of the conventional CUSUM, 

which first updates the cumulative sum of 

deviations from mean and then shrinks this 

sum to zero, by means of 

multiplication/division rather than 

addition/subtraction. Based upon a single 

statistic, {𝐴𝑡}, the structure of the 

CCUSUM is as follows: 

 

𝐴𝑡 = 0                                                          𝑖𝑓   𝐶𝑡 ≤ 𝐾

𝐴𝑡 = (�̅�𝑡 − µ + 𝐴𝑡−1)(1 − 𝐾/𝐶𝑡)          𝑖𝑓   𝐶𝑡 > 𝐾
}

 (1) 

where 𝐶𝑡 = |𝐴𝑡−1 + (�̅�𝑡 − µ)| is the 

updated sum with 𝐴0 = 0, and K is the 

usual reference parameter. A one sided 

CCUSUM signals, no sooner than 𝐴𝑡 >

𝐻, where H is the control limit of the 

CCUSUM. 

2.2 Dual CUSUM chart under the 

assumptions of perfect 

measurements 

A handicap of the CUSUM chart and 

its variants is that they are only optimal 

for a given shift size, to be known or 

assumed in advance. (Zhao et al., 2005) 

argued, since the size of the shift couldn’t 

be known for sure before its occurrence, 

therefore, it would be more appropriate 

to assume that the shift might occur 

uniformly within a specified range, say, 

[𝑎, 𝑏]. Under this assumption, he proposed 

of running two, instead of one CUSUM, for 

better capability of the control scheme, to 

detect changes in the parameter. A one 

sided DCUSUM, based on {�̅�𝑡}, includes 

two charts {𝐷1,𝑡} and {𝐷2,𝑡}, running 

simultaneously: 

 

𝐷1,𝑡 = max [0, 𝐷1,𝑡−1 + (�̅�𝑡 − µ) − 𝐾1]

𝐷2,𝑡 = max [0, 𝐷2,𝑡−1 + (�̅�𝑡 − µ) − 𝐾2]
}

 (3) 

where 𝐷𝑖,0 = 0, 𝐾𝑖 = 𝑘𝑖𝜎/√𝑛  (for 𝑖 = 1 , 2) 

is the reference value. The one-sided 

DCUSUM sets off on out-of-control signal 

when 𝐷𝑖,𝑡 > 𝐻𝑖 (for 𝑖 = 1, 2), where 𝐻𝑖 =

ℎ𝑖𝜎/√𝑛  is the control limit of the DCUSUM 

chart. In order to work efficiently, 

DCUSUM scheme requires the following 

assumptions met: 

(i) The shift size 𝛿 lies uniformly 

within [a, b]. 

(ii) 𝑘1ℎ1 = 𝑘2ℎ2  and 𝑘1 + ℎ1 >

𝑘2 + ℎ2 

(iii) 𝑘1 = (3𝑎 + 𝑏)/8 and  𝑘2 = (𝑎 +

3𝑏)/8. 

For more details vide (Zhao et al., 2005).  

 

3 Effect of measurement errors on the 

performance of control charts  

The discrepancy between the 

observed or recorded value and the actual 

or true value of a characteristic is called 

measurement error. This error creeps into 

a study by a number of reasons e.g. 

inability of the measuring instrument, 

human or machine error, proxies or 

surrogates, etc. Once occurred, through 

whatever source, these errors cannot be 

detected and measured. Therefore, one 

has to be vigilant of and accounted for 
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these errors. The effect of the 

measurement errors is manifold: non-

representative average, lack of precision, 

inflated variance and consequent false 

conclusions, etc. A frequent way of 

countering these errors is to use multiple 

observations per sampling unit. But for 

cost consideration, the number of 

measurements per unit is restricted to 

five. A number of publications are 

available on the effect of measurement 

errors on the performance of the control 

charts. (Linna & Woodall, 2001) 

comprehensively studied the effect of the 

errors on the performance of the Shewhart 

charts. They considered the simple linear 

model, with and without a covariate, to 

evaluate the effect of these errors. They 

concluded that the standardized shift in 

the covariate parameter was always 

smaller than that in the process 

parameter. Moreover, the power of the 

chart could be raised by using multiple 

measurements per unit. (P. E. 

Maravelakis, 2012) observed the error 

effect on the classical CUSUM chart and 

concluded that under the effect of 

measurement errors, the CUSUM chart 

performed better than EWMA chart to 

detect smaller shifts.  The most common 

situations of the errors is represented by a 

simple linear model: 

𝑌𝑖𝑡 = 𝑋𝑖𝑡 + 𝑒𝑖𝑡,                                                        

(1) 

where 𝑋𝑖𝑡 is the actual/true value of the 

underlying quality characteristic, as 

defined above;  𝑌𝑖𝑡 is the observed 

/measured value of the quality 

characteristic; and 𝑒𝑖𝑡 is the measurement 

error, which is uncorrelated with 𝑋𝑖𝑡, and 

is identically and independently 𝑁(0, 𝜎𝑚
2 ). 

(Linna & Woodall, 2001) used a covariate 

for the measurement of the 𝑋𝑖𝑡:  

𝑌𝑖𝑡 = 𝐴 + 𝐵𝑋𝑖𝑡 + 𝑒𝑖𝑡. 

The former is a special case of the latter 

with 𝐴 = 0 and 𝐵 = 1.  

Following the model given in eq. (1), it is 

obvious that  𝑌𝑖𝑡~𝑁(0, 𝜎2 + 𝜎𝑚
2 ). The 

sample mean �̅�𝑡 which is the concerned 

statistic, becomes;  

�̅�𝑡 =
∑ 𝑌𝑖𝑡

𝑛
𝑖=1

𝑛
=  

∑ (𝑋𝑖𝑡 + 𝑒𝑖𝑡)𝑛
𝑖=1

𝑛
 

�̅�𝑡 = �̅�𝑡 + �̅�𝑡  and 

𝜎2(�̅�𝑡) =
1

𝑛
(𝜎2 + 𝜎𝑚

2 )   or 

=
𝜎2

𝑛
(1 + 𝛾),  where 𝛾 =

𝜎𝑚
2

𝜎2  

𝜎(�̅�𝑡) =
𝜎

√𝑛𝑐
 ,  where   𝑐 = √

1

1+𝛾
 

�̅�𝑡~𝑁(𝜇, 𝜎2 𝑛𝑐2⁄ ). 

Let the process work under control for a 

certain time period and then a shift occurs 

in the mean of 𝑋𝑡 as: 𝜇1 =  𝜇 + 𝛿
𝜎

√𝑛
  or =

[
𝜇1−𝜇

𝜎
] √𝑛 , which will in turn transform 

into �̅�𝑡 as 𝜇1 =  𝜇 + 𝛿
𝜎

√𝑛𝑐
  or 𝛿𝑦 =

[
𝜇1−𝜇

𝜎
] √𝑛𝑐 or 𝛿𝑦 = 𝛿𝑐. Since the value of c 

remains between zero and one (being one 

for no measurement error and is inversely 

proportion to 𝛾), the shift in  �̅�𝑡 , is always 

more than that in  �̅�𝑡, whenever there is 

measurement error. It follows that the 

presence of measurement error will 

reduce the size of the shift occurred and 

consequently the sensitivity of the control 

chart.    

As mentioned before, the effect of 

measurement errors can be reduced by 

using a number of measurements per unit 

of the quality characteristic. For repeated 

measurements, the model becomes: 

𝑌𝑖𝑗𝑡 = 𝑋𝑖𝑡 + 𝑒𝑖𝑗𝑡, 

where 𝑗 = 1,2, … , 𝑚, shows the number of 

measurements per unit. The sample mean 

and its standard error become: 

�̅�𝑡 =
∑ ∑ 𝑌𝑖𝑗𝑡

𝑚
𝑗

𝑛
𝑖=1

𝑚𝑛
=  

∑ ∑ (𝑋𝑖𝑡 + 𝑒𝑖𝑗𝑡)𝑚
𝑗

𝑛
𝑖=1

𝑚𝑛
 

�̅�𝑡 =
1

𝑚𝑛
(𝑚 ∑ 𝑋𝑖𝑡

𝑛

𝑖=1

+ ∑ ∑ 𝑒𝑖𝑗𝑡

𝑚

𝑗

𝑛

𝑖=1

) 

�̅�𝑡 = �̅�𝑡 + �̅�𝑡 
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𝜎�̅�𝑡
= √

𝜎2

𝑛
+

𝜎𝑚
2

𝑚𝑛
 

= √
1

𝑛
(𝜎2 +

𝜎𝑚
2

𝑚
) 

= √
𝜎2

𝑛
(

𝑚 + 𝛾

𝑚
) 

             =
𝜎

√𝑛𝑐
  where  𝑐 = √

𝑚

𝑚+𝛾
   

Clearly, c increases as m increases, 

therefore, more the measurements per 

unit, less the 𝑆. 𝐸(�̅�𝑡). 

 

3.1 Effect of measurement errors on 

CCUSUM and DCUSUM Chart 

The foregoing discussion makes it quite 

obvious that the performance of a control 

chart, whether memory type or memory-

less, is adversely affected by the presence 

of measurement variation. The two titled 

charts are no exception to that. This 

section and next will see the same effect 

on the performance of the two charts 

namely: Crosier’s CUSUM and Dual CUSUM. 

The general format of the charts is, more 

or less, same. The only difference being 

that the observations 𝑌𝑡, unlike  𝑋𝑡, are 

infected with the measurement errors. At 

first place, for simplicity, the basic model 

given in eq. (1) is used. The slightly 

changed format of CCUSUM is as follows: 

 

𝐴𝑡 = 0                                                          𝑖𝑓   𝐶𝑡 ≤ 𝐾

𝐴𝑡 = (�̅�𝑡 − µ + 𝐴𝑡−1)(1 − 𝐾/𝐶𝑡)          𝑖𝑓   𝐶𝑡 > 𝐾
}

                                    (4) 

and the DCUSUM becomes:  

 

𝐷1,𝑡 = max [0, 𝐷1,𝑡−1 + (�̅�𝑡 − µ) − 𝐾1]

𝐷2,𝑡 = max [0, 𝐷2,𝑡−1 + (�̅�𝑡 − µ) − 𝐾2]
}

 (5) 

where �̅�𝑡 is as defined previously in eq (4). 

 

4 Performance measures and analysis 

In control charting studies, the 

performance evaluation of the proposal 

has always been a crucial and significant 

part of the research. Here, the evaluation 

process is carried out using different 

performance measures, derived from 

different properties of the run length 

distribution of the controlling scheme, 

namely: average run length (ARL), 

standard deviation of RL (SDRL), median 

of RL (MDRL), extra quadratic loss (EQL), 

relative ARL (RARL) and performance 

comparison index (PCI).  

Average Run Length (ARL) : A control 

chart is usually evaluated in terms of the 

average of the run length distribution 

(ARL). A run is the number of consecutive 

samples, for which the process remains in 

control. The ARL is usually defined as the 

reciprocal of the probability that the 

value of the statistic, used for process 

monitoring, falls outside the control 

limits. It refers to as the number of 

samples before a shift is observed, when 

the process is either in control or out of 

control. Generally, it is assumed that the 

control scheme starts at its initial value 

and the process is in control, for the 

computation of ARL. Such an ARL is called 

zero-state ARL. A steady-state ARL 

(SSARL), on the other hand, is computed 

by assuming that the process has been 

working for quite some time, when the 

scheme is applied, which implies that the 

initial value of the scheme may not be 

zero. More information can be found in 

(James M Lucas & Crosier, 2000) and 

(James M Lucas & Saccucci, 1990). The 

ARL for a chart should be as high as 

possible, when the process is in control; 

and should be as low as possible, when the 

process is out of control. The ARL is used 

as a comparative measure, among 

different control charts, for a particular 

shift size. It is computed either by using 

Markov Chain approach or by Monte Carlo 

simulation. The current paper uses the 

latter. 
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Extra Quadratic Loss (EQL): The extra 

quadratic loss (EQL) is an alternative 

performance measure that appraises the 

overall performance of a control chart, 

against the whole domain of shifts. The 

EQL is defined as a weighted average ARL 

over the whole process shift domain 

[𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥]  using the square of shift (𝛿2) 

as a weight. The minimum EQL value of a 

chart construes that the chart is the best 

among all. It is assumed that the 

probability distribution of 𝛿 is uniform 

with density function (𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)−1 

over the entire shift range [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥]. 

Mathematically the EQL is given as: 

 EQL

= (𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)−1 ∫ 𝛿2ARL(𝛿)𝑑𝛿,
𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

   ∀ 𝛿

∈  [𝛿𝑚𝑖𝑛,  𝛿𝑚𝑎𝑥] 

Relative Average Run Length (RARL) : 

For the comparison of several control 

charts over a range of shift sizes, (Zhao et 

al., 2005) introduced another measure, 

known as IRARL or simply RARL (integrated 

relative ARL). Mathematically it is 

computed as: 

 RARL = 𝐸 [
𝐴𝑅𝐿𝑐(𝛿)

𝐴𝑅𝐿𝑜𝑝𝑡.(𝛿)
] =

(𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)−1 ∫ ARL(𝛿) ARLopt(𝛿)⁄ 𝑑𝛿
𝑏

𝑎
 

 

where 𝛿~𝑈(𝑎, 𝑏), the numerator 

encompasses the ARL of the control chart 

and denominator covers the entire 

optimal ARL’s, for the given range of 

shifts. Ideally, RARL must be one, but the 

control chart with the smallest value of 

RARL will be the best among the choices 

compared.  

Performance Comparison Index (PCI): It 

is the ratio between the EQL of a chart and 

EQL of the best chart under the same 

conditions. This index facilitates the 

performance comparison by accomplishing 

ranking based on EQL. The chart with the 

lowest EQL has a PCI value equal to one, 

and the PCI values of all other charts are 

larger than one. Mathematically it can be 

written as PCI = 𝐸𝑄𝐿 𝐸𝑄𝐿𝑜𝑝𝑡 𝑐ℎ𝑎𝑟𝑡⁄ . 

The above performance measures are also 

used by many authors in their studies 

including (Ahmad et al., 2014), (Abbas et 

al., 2016), (Zaman et al., 2020) and 

references therein.  

4.1 Evaluation 

The performance of the one-sided 

(upper), CUSUM, CCUSUM and DCUSUM 

charts is evaluated in terms of the ARL, in 

the presence as well as absence of 

measurement errors (the two sided 

versions can easily be extended on the 

same pattern). The in-control ARL is set at 

370 and the ARL (both zero and steady 

states) for different shift sizes are 

computed, under different situations for 

measurement errors. With the support of 

the ARL values, other measures EQL, RARL 

and PCI are calculated to observe the 

overall performance of control charts. 

The measurement error violation is 

studied in terms of ratio between error 

variance and the variance of the quality 

characteristic, namely  𝛾. The ratio 𝛾 

takes values between zero and one (both 

inclusive), with an interval of 0.1. Zero 

means perfect measurements and 1 refers 

to the worst case of as large measurement 

variation as the variation in the quality 

characteristic itself. Different number of 

measurements (m = 1, 2, 3, 4) are also 

incorporated. The SSARL is based upon 32 

samples before mean shifts. For DCUSUM, 

the values of k1 and k2 are respectively the 

lower and upper quartiles of the range 

[a/2, b/2], that is, k1 = (3a +b)/8 and k2 = 

(a + 3b)/8.  

The results are obtained by 

generating 100,000 random samples, from 

a standard normal distribution, of a given 

size. For each generated sample, the run 

length profile is calculated based on 

100,000 replications. It is ensured that the 

results are invariant to the values of 

process parameters mean µ and standard 
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deviation σ, and also to the sample size n. 

The out of control run length profiles ARL 

(ARL1), SDRL and MDRL (at some specific 

shift sizes) of CUSUM, CCUSUM and 

DCUSUM charts (for zero state and (steady 

state)) are presented in the Tables: 1-4 

(13-16), 5-8 (17-20) and 9-12 (21-24) 

respectively, at varying values of m. To 

illustrate further the performance of the 

three charts in the presence of 

measurement errors, the ARL curves are 

also drawn. These highlight the effect of 

the measurement errors on the ARL1 of the 

charts, and the effect of the repeated 

measurements as a remedy for this effect.  

In order to examine the overall 

performance of the said charts, the EQL, 

RARL and PCI values are provided in the 

Tables 25 and 26 while the EQL bar charts 

are provided in Figures 4 and 5. The main 

findings are as under: 
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Figure 7: Zero-state EQL comparison for (a) CUSUM, (b) CCUSUM and 

(c) DCUSUM Charts at 𝒎 = 𝟏, 𝟐, 𝟑 and 𝟒 
 

  

  

Figure 8: Zero-state EQL comparison for CUSUM, CCUSUM and DCUSUM Chart at  
(a) 𝒎 = 𝟏, (b) 𝒎 = 𝟐, (c) 𝒎 = 𝟑 and (d) 𝒎 = 𝟒 
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Figure 9:  Steady-state EQL comparison for (a) CUSUM, (b) CCUSUM and 

(c) DCUSUM Charts at 𝒎 = 𝟏, 𝒎 = 𝟐, 𝒎 = 𝟑 and 𝒎 = 𝟒 
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Figure 10: Steady-state EQL comparison for CUSUM, CCUSUM and DCUSUM Chart at  

(a) 𝒎 = 𝟏, (b) 𝒎 = 𝟐, (c) 𝒎 = 𝟑 and (d) 𝒎 = 𝟒 
 

Shift  𝛿 ↑ then ARL/SDRL/MDRL ↓: It can 

be observed from Tables 1-24 that the ARL 

values of CUSUM, CCUSUM and DCUSUM 

charts (at 𝑚=1, 2, 3 and 4) decrease as the 

values of shift increase from 0.2 to 2.0. As 

expected, having fixed in-control ARL, the 

out of control ARL/MDRL/SDRL is inversely 

proportional to the size of shift. For 

example we may observe (𝛿, ARL1) from 

Table 1 as (0.20, 106.91), (1.00, 8.57) and 

so on (2.00, 3.41). The similar decreasing 

behavior of SDRL and MDRL values can be 

observed in results; for example, from 

Table1, we can see (𝛿, SDRL) as (0.20,

101.24), (1.00, 4.77) and so on (2.00,

1.17); and (𝛿, MDRL) as (0.20, 76.00), 

(1.00, 7.00) and so on (2.00, 3.00). The 

similar behavior of ARL, SDRL and MDRL 

values (with respect to 𝛿) can be observed 

in Table 2-24 at varying values of m. With 

the gradual increments of 𝛿, exactly the 

same declining pattern of 𝐴𝑅𝐿1 curves can 

be seen in the Figures: 1 − 6, for  𝑚 =

1, 2, 3, 4.  
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Ratio 𝛾 ↑ then ARL/SDRL/MDRL ↑: It can 

also be observed from Table 1-24 that the 

ARL values of CUSUM, CCUSUM and 

DCUSUM charts (at 𝑚=1, 2, 3 and 4) 

increase as the ratio 𝛾 increases from 0 

(perfect case) to 1.0 (worst case). The out 

of control ARL (ARL1) is directly 

proportional to the ratio γ, that is, more 

the measurement variation, higher the 

ARL1. The SDRL and MDRL values also 

increase as the ratio 𝛾 increase. For 

example we may observe (𝛾, ARL1)  from 

Table 1 as (0.00, 106.91), (0.30, 140.81),

(0.60, 166.08) and so on (1.00, 193.40). 

With the increment of 𝛾,  the 𝐴𝑅𝐿1 curves, 

all and sundry, shift upwards to the right. 

From Figures 1 − 6, the left bottom curve 

is for 𝛾 = 0 and the right top most curve is 

for 𝛾 = 1.0.  

 

The similar decreasing behavior of SDRL 

and MDRL values can be observed in the 

results: for example from Table1 we can 

see (𝛾, SDRL) as  (0.00, 101.24), (0.30,

134.42), (0.60, 161.32) and so on (1.00,

187.65); and (𝛾, MDRL) as   (0.00, 76.00), 

(0.30, 99.00), (0.60, 117.00) and so 

on (1.00, 136.00). The similar behavior of 

ARL, SDRL and MDRL values (with respect 

to 𝛾) can be observed in Table 2-24. 

 

The simulation study conforms 

numerically to the established notion that 

repeated measurements lessen the 

measurement variation and thus 

decreases the ARL1. That is, the values of 

the pair (𝛿, ARL1) from Tables 1 (𝑚 = 1) 

and Table 4 (𝑚 = 4) are respectively:  

(0.2, 157.91) and (0.2, 140.07), for 𝛾 = 0.5. 

The phenomenon is endorsed by the 

figures too. 

 

EQL, RARL, and PCI: The overall 

performance of CUSUM, CCUSUM and 

DCUSUM charts can be observed in Table 

25 & 26 and Figures 7 & 8. The EQL values 

have same interpretation as ARL1. For 

example, one may observe  (𝛾, EQL), from 

Table 25 at 𝑚 = 1 as, (0.00, 9.202), 

(0.30, 13.499), (0.60, 18.536) and so 

on (1.00, 26.422). It may also be observed 

that (at 𝛾 = 0.10, 𝑚 = 1, 2, 3, 4) the 

respective EQL values for CUSUM chart are 

10.547, 10.1954, 10.083 and 10.024; for 

CCUSUM chart, are 10.561, 10.207, 10.101 

and 10.040; and for DCUSUM chart, are 

10.435, 10.073, 9.947 and 9.881.  

 

In Figure 7, the EQL values of each chart 

are directly proportion to 𝛾  as observed 

in point 2. The EQL values of each chart 

decrease as the value of m increases, 

which shows that the overall effectiveness 

of a chart is directly proportional to the 

number of measurements m. Moreover, 

the Figure 8 indicates that at a particular 

value of m, all charts have almost same 

overall detection ability. 

Preference order, with respect to the 

sensitivity: A cursory overview of the 

Tables reveals the unaltered preference 

order, with respect to the sensitivity, 

among the three charts: DCUSUM is the 

most preferred one, followed by CCUSUM 

and CUSUM charts.  

Contradictory to (Bennett, 1954) findings 

that the measurement variation less than 

the process variation is negligible, it 

suggests that measurement variation 

amounted to even 40% or 50% of the 

process variation, significantly aggravates 

the detecting power of a chart. For 

instance, to detect a shift of size one, 

CCUSUM and DCUSUM require 

respectively, 8.59 and 8.97 samples, when 

there is no measurement variation; while 

for the 50% measurement variation of the 

process variation, they require 16.71 and 

16.93 samples respectively (cf. Tables: 5 

and 9). A net percentage increase of 94.5 

and 88.74 respectively. 

 

5 An Illustrative Example (Application 

of Study) 
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In order to demonstrate the 

application of the study, a situation is 

cosidered, which requires monitoring of 

an industrial process manufacturing piston 

rings for an engine type. A piston ring is a 

metallic split ring attached to the outer 

diameter of a piston in an internal 

combustion engine or steam engine 

(Figure 11). The piston rings perform 

different functions, for example sealing 

the combustion chamber, improving heat 

transfer, maintaining the proper quantity 

in engine etc. Piston rings for an 

automotive engine are produced by a 

forging process. 

 

Figure 11: Stainless Steel Piston Rings 

It is required to control the inside 

diameters of the manufactured rings. The 

data consist of 40 samples of 5 piston rings 

and the inner diameter is measured to the 

nearest 100th of a millimeter (mm). The 

complete data are given in (Montgomery, 

2020). For the current example, the initial 

50 observations of the data are 

considered. The first 30 are used to 

estimate the unknown process parameters 

(phase I samples): �̂� = 74.003 and �̂� =

0.0116. Whereas the next 20 are utilized 

as phase II samples to examine the 

performance of the three control charts: 

CUSUM, CCUSUM and DCUSUM, in the 

presence of the measurement errors. 

These 20 observations are altered, by 

adding 0.015 to each observation, in order 

to adjust the data for a shift. Three 

situations for measurement errors are 

taken: no errors (γ = 0), error variation is 

50% of the process variation (γ = 0.5) and 

error variation is equal to the process 

variation (γ = 1). The control chart 

parameters for CUSUM, CCUSUM and 

DCUSUM are respectively: (k = 0.5, h = 

4.096), (k = 0.5, h = 4.101) and (k1 = 0.32, 

k2 = 0.78, h1 = 7.04, h2 = 2.89). These 

parameters ensure an average run length 

of 370, when the process is working in-

control. The control charts are shown in 

figures 12 to 14. 

https://en.wikipedia.org/wiki/Piston
https://en.wikipedia.org/wiki/Internal_combustion_engine
https://en.wikipedia.org/wiki/Internal_combustion_engine
https://en.wikipedia.org/wiki/Steam_engine
https://en.wikipedia.org/wiki/Combustion_chamber
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Figure 12: Control charts for CUSUM, CCUSUM and DCUSUM charts at 𝜸 =  𝟎 

 
Figure 13: Control charts for CUSUM, CCUSUM and DCUSUM charts at 𝜸 =  𝟎. 𝟓 

 

 
Figure 14: Control charts for CUSUM, CCUSUM and DCUSUM charts at 𝜸 =  𝟏 
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The above figures vividly explain the 

deteriorating powers of the three charts, 

with the gradual intensity of measurement 

errors. When there is no error variation at 

work, the CUSUM and CCUSUM initiate a 

signal at sample number 39. With 50% 

variation, it becomes 44, while 100% 

variation aggravates it further to 49. 

Almost the similar pattern, the DCUSUM 

follows: with no errors it signals first at 

sample number 43 and with 50% and 100% 

error variations, these become 

respectively, 45 and 47. 

 

6 Conclusion and Recommendations 

The paper attempted to highlight 

the adverse effect of measurement errors 

on the performance of two widely 

recommended memory type control 

charts. The paper underscored a 

diminishing power of the charts to detect 

shifts, in the process parameters, in the 

presence of these errors. Although, the 

performance did get affected, by the 

measurement variation, but the general 

preference order of the charts remained 

unchanged. To counter such an effect, at 

first place, the measurements must be as 

precisely recorded as possible, and then 

repeated measurements could be used to 

reduce the effect. Note that the study is 

done by assuming that the process 

parameters are known. The study should 

be amended accordingly in case the 

assumption does not hold. 

The study can be carried on further 

in a number of ways: more sophisticated 

models for the errors replicating different 

real-life situations, obtaining first an 

estimate of the error variance and then 

setting the control chart parameters, and 

studying the same effect on various other 

charts.  
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